HOMEWORK 11 — ANSWERS TO (MOST) PROBLEMS

5.3.43.

5.3.45.

5.3.57.

5.3.67.

(a)

()
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PEYAM RYAN TABRIZIAN

SECTION 5.3: THE FUNDAMENTAL THEOREM OF CALCULUS

1+ (=1) = 0 (split up the integral into fO% sin(z)dz + [ cos(z)dr)
2

;14 is discontinuous at 0 (the FTC applies only to continuous functions)

F'(z) = 2ze* — e

g(x) = f(x) =0= 2 =1,3,5,7,9, but 9 is an endpoints, so ignore it.
Hence, by the second derivative test:

1) <0, so g has a local max at 1
3) > 0, so g has a local min at 3
5) < 0, so g has a local max at 5
7) > 0, so g has a local min at 7

e o o o
@ @ 9 9«

In summary, g attains a local minimum at , and a local maxi-

mum at .

You do this by guessing. The candidates are 0,1,3,5,7,9 (critical points
and endpoints). Notice g(0) = 0,¢(3) < 0 but g(5) > 0, so you can elimi-
nate 0 and 3. Also ¢g(5) > ¢(1), so you can eliminate 1. Also ¢(7) < 0, so
you can eliminate 7. This leaves us with 5 and 9, but notice that g(5) = ¢g(9)

(the areas between 5 and 9 cancel out), so the answer is ’ r=5andz =9 ‘
(the book only writes = 9, but I disagree)

9" (z) = f'(z), so to see where g is concave down, we have to check where

f'(z) <0, i.e. where f is decreasing. The answer is| (3,2) U (4,6) U (8,9) |

Monday, December 2nd, 2013.
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(d) 1A/Math 1A - Fall 2013 /Homeworks/FTCSol.png

5.3.70. First rewrite the limit as:

And you should recognize that Ax = %, fl@) = Vz, z; = % In particular
a=mx9=0and b=um, =7 =1, so in fact this limit equals to:
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SECTION 5.4: INDEFINITE INTEGRALS AND THE NET CHANGE THEOREM
5.4.10. $v5 4+ v? + 20?2 + C (expand out)
5.4.12. & 4z +tan~ () + C
5.4.25. —2 (expand out)
5.4.31. 52 (Write this as 23 + z1, with antiderivative %x% + %x%)
5.4.37. 1+ 7 (Antiderivative is tan(6) 4 6, because:)

l1+cos?() 1 cos?(0)
cos2(6)  cos?(6) + cos2(6) sec(0) +1

5.4.49. 3 (antiderivative is y* — %)

5.4.54. The bee population after 15 weeks
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5.4.62.
(a)
6 6 3 6
5(6)—s(1) = / v(t)dt = / (t*—2t—8)dt = {t —t% - 84 = —12+§ _10
1 1 3 L 3 3

(Alternatively, you could have just calculated s(t) by antidifferentiating
v and then calculated s(6) — s(1) directly)

(b) Notice that v(t) = (¢t +2)(t —4) = 0, which gives t = 4 (since ¢ > 0). So in

particular v(t) < 0 on [1,4] (the particle is moving to the left) and v(t) > 0
on [4,6] (the particle is moving to the right), hence we must find:

s(1) = s(4) +5(6) — s(4) = — (s(4) — s(1)) + (s(6) — s(4))

/141) dt+/ v(t)dt

4 6
/ 2—2t—38 dt+/ (> —2t —8) dt
1 4

3 3 ¢

— —t? -8t — —t? -8t
[3 ] “[5-2-,
( 18) +

5.4.64. 1800 (antiderivative is 200t — 2t2, a = 0, b = 10)

SECTION 5.5: THE SUBSTITUTION RULE

5.5.7. 3 cos(z?) + C (u=2?, du = 2zdz)
5.5.31. ') 4 C (u = tan(z), du = sec?(z)dx)

5.5.33. —=L1~ (u = sin(x), du = cos(zx)dzx)

sin(x)
5.5.48. (2% + 1)% — (2% + )2 (u=2a2+1, du = 2xde, 22 = u—1)

5.5.59. ¢ — /e (u=1 du:—x%dx,azl,b:%)

x?
5.5.62. sin(1) (u = sin(z), du = cos(z), a =0, b= 1)
5.5.77. 0+ 67 (the first integral is 0 because the function is an odd function, or

use u = 4 — 2, du = —2zxdz, a = 0, b = 0, and the second integral represents the
area of a semicircle with radius 2)
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5.5.86. Using the substitution u = x2, we get du = 2zdx, so xdx = %du. Moreover,
the endpoints become u(0) = 0 and u(3) =9, so:

3 9 1 1 79
/0 zf (2%) dx :/0 f(u)idu = 5/0 fl@)dx == =
5.5.92.

(a) For the first integral, let u = cos(z), then du = —sin(z)dz = —v/1 — vw?dz,

so the first integral becomes flo — (1“)u2 fo 1(") du. For the second

integral, let u = sin( ), then du = cos(x)dx = /1 — u2dx, so the second
integral becomes fo \/L)du, and it is now clear that both integrals are
equal!

(b) By (a) with f(z) = 22 (for the first step), and the fact that sin?(z) =
1 — cos?(x), we get:

™

/2 cos?(z)dr = /2 sin?(z)dz = /2 ldx — /2 cos?(z)dx = T_ /2 cos? (x)dx
0 0 0 0 2 Jo

Solving for f02 cos?(x)dz, we get: f02 cos?(x)dr = T |, and hence f02 sin?(x)da

ISE

ISE

(by ()




