HOMEWORK 11 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

Section 5.3: The Fundamental Theorem of Calculus

5.3.43. $1+(-1)=0$ (split up the integral into $\left.\int_{0}^{\frac{\pi}{2}} \sin (x) d x+\int_{\frac{\pi}{2}}^{\pi} \cos (x) d x\right)$
5.3.45. $\frac{1}{x^{4}}$ is discontinuous at 0 (the FTC applies only to continuous functions)
5.3.57. $F^{\prime}(x)=2 x e^{x^{4}}-e^{x^{2}}$

5.3.67.

(a) $g^{\prime}(x)=f(x)=0 \Rightarrow x=1,3,5,7,9$, but 9 is an endpoints, so ignore it. Hence, by the second derivative test:

- $g^{\prime \prime}(1)=f^{\prime}(1)<0$, so g has a local max at 1
- $g^{\prime \prime}(3)=f^{\prime}(3)>0$, so g has a local min at 3
- $g^{\prime \prime}(5)=f^{\prime}(5)<0$, so g has a local max at 5
- $g^{\prime \prime}(7)=f^{\prime}(7)>0$, so g has a local min at 7

In summary, g attains a local minimum at 3 and 7 , and a local maximum at 1 and 5 .
(b) You do this by guessing. The candidates are $0,1,3,5,7,9$ (critical points and endpoints). Notice $g(0)=0, g(3)<0$ but $g(5)>0$, so you can eliminate 0 and 3 . Also $g(5)>g(1)$, so you can eliminate 1 . Also $g(7)<0$, so you can eliminate 7 . This leaves us with 5 and 9 , but notice that $g(5)=g(9)$ (the areas between 5 and 9 cancel out), so the answer is $x=5$ and $x=9$ (the book only writes $x=9$, but I disagree)
(c) $g^{\prime \prime}(x)=f^{\prime}(x)$, so to see where g is concave down, we have to check where $f^{\prime}(x)<0$, i.e. where f is decreasing. The answer is $\left(\frac{1}{2}, 2\right) \cup(4,6) \cup(8,9)$.

[^0](d) $1 \mathrm{~A} /$ Math 1A - Fall 2013/Homeworks/FTCSol.png

5.3.70. First rewrite the limit as:
$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \sqrt{\frac{i}{n}}
$$

And you should recognize that $\Delta x=\frac{1}{n}, f(x)=\sqrt{x}, x_{i}=\frac{i}{n}$. In particular $a=x_{0}=0$ and $b=x_{n}=\frac{n}{n}=1$, so in fact this limit equals to:

$$
\int_{0}^{1} \sqrt{x} d x=\left[\frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{1}=\frac{2}{3}-0=\frac{2}{3}
$$

Section 5.4: Indefinite Integrals and the Net Change Theorem
5.4.10. $\frac{1}{6} v^{6}+v^{4}+2 v^{2}+C$ (expand out)
5.4.12. $\frac{x^{3}}{3}+x+\tan ^{-1}(x)+C$
5.4.25. - 2 (expand out)
5.4.31. $\frac{55}{63}$ (Write this as $x^{\frac{4}{3}}+x^{\frac{5}{4}}$, with antiderivative $\frac{3}{7} x^{\frac{7}{3}}+\frac{4}{9} x^{\frac{9}{4}}$)
5.4.37. $1+\frac{\pi}{4}$ (Antiderivative is $\tan (\theta)+\theta$, because:)

$$
\frac{1+\cos ^{2}(\theta)}{\cos ^{2}(\theta)}=\frac{1}{\cos ^{2}(\theta)}+\frac{\cos ^{2}(\theta)}{\cos ^{2}(\theta)}=\sec ^{2}(\theta)+1
$$

5.4.49. $\frac{4}{3}$ (antiderivative is $y^{2}-\frac{y^{3}}{3}$)
5.4.54. The bee population after 15 weeks
5.4.62.
(a)
$s(6)-s(1)=\int_{1}^{6} v(t) d t=\int_{1}^{6}\left(t^{2}-2 t-8\right) d t=\left[\frac{t^{3}}{3}-t^{2}-8 t\right]_{1}^{6}=-12+\frac{26}{3}=-\frac{10}{3}$
(Alternatively, you could have just calculated $s(t)$ by antidifferentiating v and then calculated $s(6)-s(1)$ directly)
(b) Notice that $v(t)=(t+2)(t-4)=0$, which gives $t=4$ (since $t \geq 0$). So in particular $v(t) \leq 0$ on $[1,4]$ (the particle is moving to the left) and $v(t) \geq 0$ on $[4,6]$ (the particle is moving to the right), hence we must find:

$$
\begin{aligned}
s(1)-s(4)+s(6)-s(4) & =-(s(4)-s(1))+(s(6)-s(4)) \\
& =-\int_{1}^{4} v(t) d t+\int_{2}^{6} v(t) d t \\
& =-\int_{1}^{4}\left(t^{2}-2 t-8\right) d t+\int_{4}^{6}\left(t^{2}-2 t-8\right) d t \\
& =-\left[\frac{t^{3}}{3}-t^{2}-8 t\right]_{1}^{4}+\left[\frac{t^{3}}{3}-t^{2}-8 t\right]_{4}^{6} \\
& =-(-18)+\frac{44}{3} \\
& =\frac{98}{3}
\end{aligned}
$$

5.4.64. 1800 (antiderivative is $200 t-2 t^{2}, a=0, b=10$)

Section 5.5: The substitution Rule

5.5.7. $\frac{1}{2} \cos \left(x^{2}\right)+C\left(u=x^{2}, d u=2 x d x\right)$
5.5.31. $e^{\tan (x)}+C\left(u=\tan (x), d u=\sec ^{2}(x) d x\right)$
5.5.33. $-\frac{1}{\sin (x)}(u=\sin (x), d u=\cos (x) d x)$
5.5.48. $\frac{1}{5}\left(x^{2}+1\right)^{\frac{5}{2}}-\frac{1}{3}\left(x^{2}+1\right)^{\frac{3}{2}}\left(u=x^{2}+1, d u=2 x d x, x^{2}=u-1\right)$
5.5.59. $e-\sqrt{e}\left(u=\frac{1}{x}, d u=-\frac{1}{x^{2}} d x, a=1, b=\frac{1}{2}\right)$
5.5.62. $\sin (1)(u=\sin (x), d u=\cos (x), a=0, b=1)$
5.5.77. $0+6 \pi$ (the first integral is 0 because the function is an odd function, or use $u=4-x^{2}, d u=-2 x d x, a=0, b=0$, and the second integral represents the area of a semicircle with radius 2)
5.5.86. Using the substitution $u=x^{2}$, we get $d u=2 x d x$, so $x d x=\frac{1}{2} d u$. Moreover, the endpoints become $u(0)=0$ and $u(3)=9$, so:

$$
\int_{0}^{3} x f\left(x^{2}\right) d x=\int_{0}^{9} f(u) \frac{1}{2} d u=\frac{1}{2} \int_{0}^{9} f(x) d x=\frac{4}{2}=2
$$

5.5.92.
(a) For the first integral, let $u=\cos (x)$, then $d u=-\sin (x) d x=-\sqrt{1-u^{2}} d x$, so the first integral becomes $\int_{1}^{0} \frac{f(u)}{-\sqrt{1-u^{2}}} d u=\int_{0}^{1} \frac{f(u)}{\sqrt{1-u^{2}}} d u$. For the second integral, let $u=\sin (x)$, then $d u=\cos (x) d x=\sqrt{1-u^{2}} d x$, so the second integral becomes $\int_{0}^{1} \frac{f(u)}{\sqrt{1-u^{2}}} d u$, and it is now clear that both integrals are equal!
(b) By (a) with $f(x)=x^{2}$ (for the first step), and the fact that $\sin ^{2}(x)=$ $1-\cos ^{2}(x)$, we get:

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \cos ^{2}(x) d x=\int_{0}^{\frac{\pi}{2}} \sin ^{2}(x) d x=\int_{0}^{\frac{\pi}{2}} 1 d x-\int_{0}^{\frac{\pi}{2}} \cos ^{2}(x) d x=\frac{\pi}{2}-\int_{0}^{\frac{\pi}{2}} \cos ^{2}(x) d x \\
& \text { Solving for } \int_{0}^{2} \cos ^{2}(x) d x, \text { we get: } \int_{0}^{2} \cos ^{2}(x) d x=\frac{\pi}{4}, \text { and hence } \int_{0}^{2} \sin ^{2}(x) d x=\frac{\pi}{4} \\
& (\text { by (a)) }
\end{aligned}
$$

[^0]: Date: Monday, December 2nd, 2013.

